БРАСЫ

Брасы — это снасти, закрепленные на ноках реев и служащие для их постановки вместе с парусами под определенным углом относительно направления ветра и движения судна. Поворачивание реев в горизонтальной плоскости брасами называют брасопкой.

Брасы нижних реев состоят из шкентеля, укрепленного в ушке оковки нока рея, и хват-талей. Шкентель браса оканчивается бло-

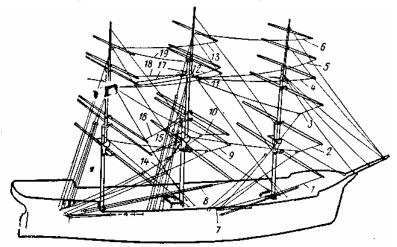


Рис. 420. Брасы реев парусного судна.

1 — фока-брас; 2 — нижний фор-марса-брас; 3 — верхний фор-марса-брас; 4 — нижний фор-брам-брас; 5 — верхний фор-брам-брас; 6 — фор-бом-брам-брас; 7 — направляющие блоки; 8 — грота-брас; 9 — нижний грот-марса-брас; 10 — верхний грот-марса-брас; 11 — нижний грот-брам-брас; 12 — верхний грот-брам-брас; 13 — грот-бом-брам-брас; 14 — бегинбрас; 15 — нижний крюйс-марса-брас; 16 — верхний крюйс-марса-брас; 17 — нижний крюйс-брам-брас; 19 — кройс-бом-брам-брас.

ком, другой блок находится на релинге или выстреле за бортом. Иногда лопарь талей проводят еще через один блок, находящийся тоже за бортом (рис. 420)

Брасы марса-реев можно проводить тремя способами.

Первый способ (с «двойным горденем»). Неподвижный блок крепят на лонга-салингах марса кормовой мачты; лопарь с подвижным блоком ведут вниз к фальшборту на битенг около вант.

Второй способ (с «одинарным горденем»). Коренной конец браса крепят на нижней ванте (нижний марса-реи) или стень-штаге (верхний марса-реи), лопарь проводят через блок в шкентеле браса и далее вниз к фальшборту на битенг около вант.

Третий способ (с мантылем). Коренной конец браса закрепляют на нижнем штаге (нижний марса-реи) или стень-штаге (верхний марса-реи). Затем брас пропускают через блок шкен-

теля браса и стропят к другому блоку, лопарь которого ведут к фальшборту на битенг, предварительно протягивая его через блок на релинге или выстреле. Брасы же крюйс-марса-реев направляют к носу судна (см. рис. 420).

Брам- и бом-брам-брасы имеют в зависимости от размеров судна простой или двойной гордень. Блок крепят на лонга-салингах или огонах вант стеньги. Крюйс-брам- и крюйс-бом-брам-брасы направляют в нос судна (см. рис. 420).

На больших парусных судах нижние брасы и марса-брасы тянут лебедками.

БРАСЫ СТАРИННЫХ СУДОВ

Грота-браоы. Коренной конец браса крепили на рыме, установленном с наружной стороны борта. Затем лопарь вели к блоку шкентеля браса, тянули в обратном направлении и, пропустив через блок у фальшборта квартердека, крепили на утке вблизи этого блока (рис. 421).

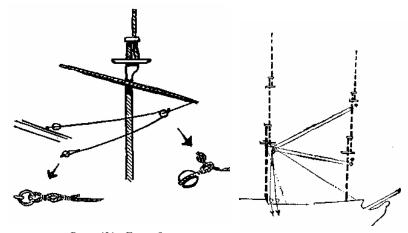
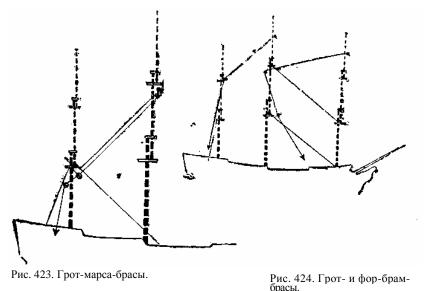


Рис. 421. Грота-брас.


Рис. 422. Фока-брасы и фор-марса-брасы.

Фока-брасы. Брас, коренной конец которого крепили на огоне грота-штага, проводили через блок на ноке рея, снова вели к огону штага, где пропускали через двухшкивный блок, установленный на огоне штага, затем через второй двухшкивный блок на первой носовой ванте грот-мачты ниже швиц-сарвеней. Закрепляли брас на утке палубы, предварительно пропустив через третий двухшкивный блок, находящийся вблизи основания мачты.

Фор-марса-брас проводили через вторые шкивы трех упомянутых двухшкивных блоков; коренной конец его всегда крепили на грота-штаге (рис. 422).

Грот-марса-брасы. Коренной конец браса крепили на огоне бизань-штага, затем проводили через блок на ноке рея, далее через блок, укрепленный на длинном шкентеле под крюйс-марсом, и блок, расположенный на кормовой ванте (последний находился на 2 /₃ ее высоты). После этого брас проходил через блок на палубе и крепился на утке на внутренней стороне фальшборта (рис. 423)

Грот-брам-брас огоном крепили на ноке рея, затем вели через блок у топа крюйс-стеньги, пропускали через марс и вант-клотень,

установленный на последней кормовой бизань-ванте, и спускали вниз, где крепили на утке рядом с уткой для грота-браса (рис 424)

Фор-брам-брас огоном крепили на ноке рея, затем вели через первый блок, закрепленный на петле грот-стень-штага, и второй блок, установленный на кормовой стороне салинга. После этого брасы спускали вниз вдоль грот-мачты и проводили через третий блок на грота-штаге и четвертый блок на кормовых релингах форкастеля. Закрепляли его на утке (см. рис. 424).

Грот-трюм-брасы крепили на ноках рея, проводили через коуши на крюйс-брам-стеньге, спускали вниз и, пропустив через крюйс-марс, закрепляли на утках вблизи первых бизань-вант (рис. 425).

Фор-трюм-брасы крепили на ноках реев, проводили через блоки на грот-стень-штагах и через блоки на огонах фока-вант затем пропускали через фор-марс и коуши на грота-штаге и крепили на релингах форкастеля (см. рис. 425).

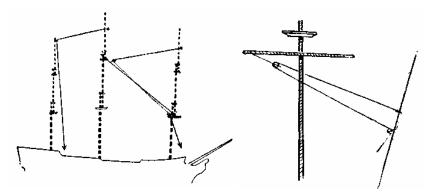


Рис. 425. Грот- и фор-трюм-брасы.

Рис. 426. Бегин-брасы и крюйс-марсабрасы.

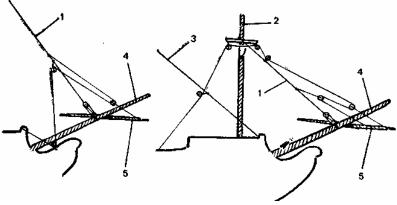


Рис. 427. Блинда-брасы (трисы), XVI—XVII вв.

1 — фока-штаг; 2 - фок-мачта; 3 — грота-штаг; 4 — бушприт; 5 — блинда-рей.

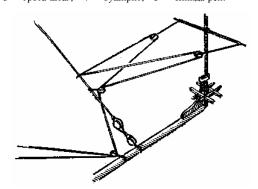


Рис. 428. Бовен-блинда-брасы.

Бегин-брасы. Коренной конец браса крепили на последней ванте грота, на $^{2}/_{3}$ ее высоты; затем брас вели через блок на шкентеле нока рея, тянули снова к ванте и, пропустив через направляющий блок, крепили на утке с внутренней стороны борта (рис. 426).

Крюйс-марса-брасы проводили так же, как и брасы бегин-рея, только направляющий блок закрепляли непосредственно под швиц-сарвенями.

Крюйс-брам-брасы крепили огоном на ноке рея, проводили через блок, установленный на грот-стень-вантах, затем через грот-марс и набивали рядом с крюйс-марса-брасами. Чтобы достичь больших углов натяжения, бегин-крюйс-марса- и крюйс-брам-брасы заводили крестообразно, а именно: брасы правых ноков тянули на левый борт, и наоборот.

Блинда-брасы в разные периоды проводили по-разному. На рис. 427 показаны способы их проводки.

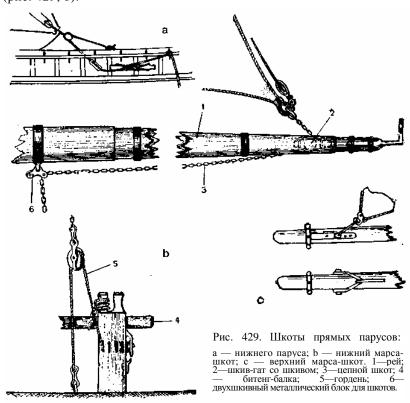
Бом-блинда-брасы крепили огонами на ноках рея и вели через блоки в нижней части фор-стень-штага и на фока-штаге, а затем через направляющие блоки ватер-вулинга бушприта. Крепили их на носовых релингах.

Бовен-блинда-брасы закрепляли на фор-стень-штаге, затем проводили к блокам шкентелей, установленным на ноках рея, тянули снова к стень-штагу, пропускали через два двухшкивных блока (один находился на бушприте) и крепили на носовых релингах (рис. 428).

ЛИРИК-ФАЛ И ГАЛС-ТАЛИ БИЗАНЬ-РЮ

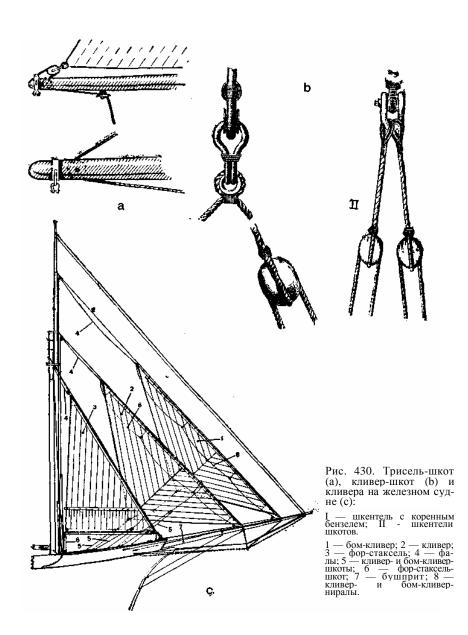
Бизань-рю имела только дирик-фал и галс-тали, которые несли и галеры. Галс-талями называли тросы, заведенные в блок на нижних концах реев, которые служили для их наклона, дирик-фалами — тросы, проведенные через блок на реях и предназначавшиеся для оттягивания их нижних концов к корме.

шкоты


Шкоты — это снасти, которыми тянут шкотовый угол паруса к корме.

Шкоты нижних парусов состоят из двойных или одинарных горденей. Если гордени двойные, то коренной конец шкота крепят в рыме на релинге, а лопарь шкота проводят через блок, укрепленный в шкотовом углу паруса, через шкив-гат со шкивом в фальшборте и закрепляют на утке, бортовом или обычном кнехте (рис. 429, a).

Шкоты нижних марселей — это простые тросы или цепи (последние применяют на больших парусных судах). От шкотового


угла их ведут через шкив-гат со шкивом на ноке нижнего рея, затем через двухшкивный блок, укрепленный на середине рея, к основанию мачты, и через блок на битенг.

Шкоты верхних марселей обычно глухие, прикрепляют их к рею при помощи скоб или специальных железных «вилок» (рис. 429, b).

Шкоты брамселей и бом-брамселей, как и шкоты нижних марселей, проводят к основанию мачты, где закрепляют на битенгах.

Трисель-шкоты и галф-топсель-шкоты. Шкоты триселей представляют собой двойные или простые гордени. Если гордени двойные, то коренной конец шкота крепят на ноке бизань-гика, проводят через блок в шкотовом углу паруса, затем через шкив в шкив-гате-гика и закрепляют на утке бизань-гика. Если применяют простые гордени, то шкот от шкотового угла ведут через шкив в шкив-гате гика и крепят: на утке бизань-гика (рис. 430, а).

Шкот галф-топселя простой: от шкотового угла его тянут через блок, укрепленный на ноке гафеля, к битенгу.

Шкоты кливеров и стакселей. У этих парусов по два шкота: по одному на каждый борт. На небольших парусных судах шкоты состоят из троса, закрепленного в шкотовом углу паруса при помощи коренного бензеля. Если парус большой (фор-стеньги-стаксель или большой стаксель), то в шкотовых углах паруса крепят шкентели, к которым присоединяют простые или двойные гордени. При этом коренной конец шкота крепят на фальшборте или баке, на битенге (см. рис. 411 и 430, b и с).

Эренс-бакштаги и бизань-гика-шкоты. Двое эренс-бакштагов, которые представляют собой простые или двойные гордени, удерживают гафель с боков.

Бизань-гика-шкоты служат для удержания бизань-гика с боков и состоят из двух талей, закрепленных на бугеле гика-топенантов на ноке гика (см. рис. 297 и 298).

ШКОТЫ СТАРИННЫХ СУДОВ

Грота-шкоты крепили на рымах с внешней стороны борта, на бархоутах, затем проводили через блоки в шкотовом углу паруса, через блок, установленный на наружной стороне борта, далее через шкив-гат со шкивом у квартердека и закрепляли на утке «с лапками», находящейся на фальшборте у грота-вант (рис. 43) и 432).

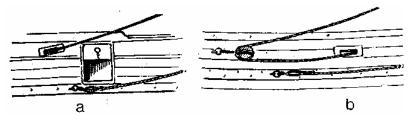


Рис. 431. Шкоты нижних прямых парусов судов XVII (а) и XVIII в. (b).

Фока-шкоты вооружали так же, как и грота-шкоты. Во второй половине XVIII в. лопарь шкота стали крепить на утке второй палубы, под шкафутом.

Бизань-шкоты крепили на стропе блока у основания флаг-штока, проводили через блок в шкотовом углу паруса, затем снова через первый блок к утке на гакаборте.

Грот-марса-шкоты крепили в шкотовых углах паруса при помощи простых кнопов, проводили через двойной блок на ноке рея (через него проходил и топенант), затем через блок на середине рея и перед мачтой спускали вниз на битенг или на «мачтовый» кнехт второй палубы. Закрепляли шкоты на верхних концах битенгов, предварительно проведя через его второй шкив. (Мачто-

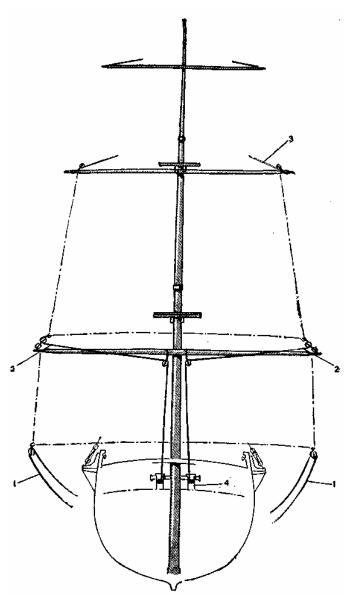
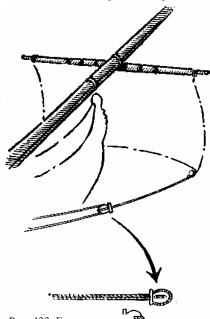


Рис. 432. Шкоты прямых парусов судов XVII—XVIII вв. 1 — шкот нижнего паруса; 2 - марса-шкот; 3 - брам-шкот; 4 - битенг для крепления шкотов


вый кнехт, подобно «фаловым» битенгам, состоял из двух вертикальных столбов со шкивами, крепко связанных с набором судна и стоявших перед нижней мачтой, и поперечной балки.)

Фор-марса-шкоты проводили так же, как и рассмотренные гротмарса-шкоты, только мачтовый кнехт, на котором их крепили, находился на баке.

Крюйс-марса-шкоты проводили аналогичным образом: пропустив через блок у основания мачты, шкот крепили на утке квартердека (см. рис. 432).

Фор-, грот- и крюйс-брамшкоты, а также бом-брамсель- и трюмсель-шкоты — это тросы, которые использовали и как топенанты (см. рис. 432).

Блинда-шкоты. На ноках блинда-рея крепили длинные шкентели, в концы которых были вплеснены блоки. Шкот, коренной конец которого крепили вблизи коренного конца фока-шкота, проводили через блок шкентеля, затем через шкив в шкив-гате рядом со шкивом, через который фока-шкот. проходил закрепляли на второй палубе, на утке внутри фальш- Рис. 433. Блинда-шкоты. борта.

Бом-блинда-шкоты одновременно работали и как топенанты блинда-рея (рис. 433).

Стаксель-шкоты представляли собой двое талей с блоками. Два верхних блока были закреплены в шкотовом углу паруса, а два нижних — на палубе. Лопарь крепили на утке, стоящей на палубе рядом с блоком. На меньших стакселях ставили шкоты в виде простых тросов или горденей (рис. 434).

Кливер-шкоты. Они были такими же, как шкоты стакселей, и состояли из двух тросов, закрепленных на утках бака или под фока-вантами (рис. 435).

ГАЛСЫ

Галсы — это простые тросы, которыми оттягивают к носу шкотовые или галсовые углы косых парусов и крепят их.

Галсы прямых парусов. Галсы грота крепят на мачтовом кнехте. Фока-галсы ведут через направляющий блок, установленный

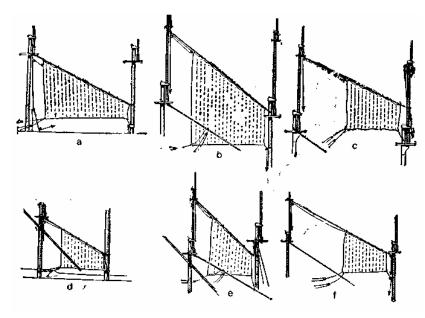


Рис. 434. Шкоты и галсы стакселей старинных судов: а — грота-стаксель; b — грот-стеньги-стаксель; с — грот-брам-стаксель; b — бизань-стаксель; е — крюйс-стеньги-стаксель; f — крюйс-брам-стаксель.

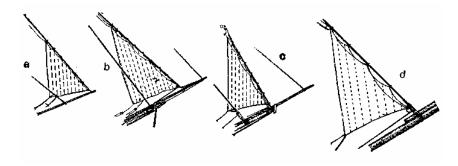


Рис 435 Кливер-шкоты и кливер-галсы старинных судов: а — бом-кливер; b — кливер; с — средний кливер; d — фор-стеньги-стаксель.

на баке, и закрепляют на нагельной планке фальшборта. Остальные прямые паруса галсов не имеют.

Трисель- и галф-топсель-галсы. Трисель-галсами называют бензели, которыми крепят галсовый угол паруса у мачты или трисель-мачты. Галф-топсель-галсы — это простые тросы, которые от галсового угла паруса идут вниз к основанию мачты и крепятся на кофель-нагельной планке.

Талсы кливеров и стакселей представляют собой бензели, удерживающие галсовый угол на леере или штаге.

ГАЛСЫ СТАРИННЫХ СУДОВ

Грота-галсы проводили от шкотового угла паруса через блок на внешней стороне болта, затем через отверстие в фальшборте — галсклампе — внутрь судна и крепили на утке «с лапками».

Галс-клампы устанавливали в правой и левой частях фальшборта в районе грот-мачты. Внутри их обшивали мягким деревом

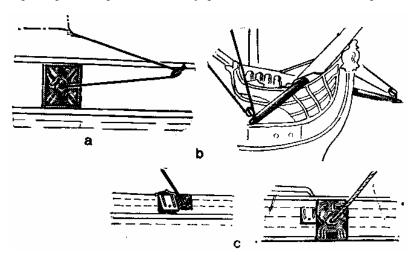


Рис. 436. Проводка галсов старинных парусов: а — грота-галс; b — фока-галс; с — галс-клампы.

для предохранения тросов от перетирания, снаружи украшали резьбой, орнаментом или масками (рис. 436).

Фока-галсы крепили к шкотовому углу паруса, проводили через простой блок на ноке боканца и закрепляли на баке (на утке, расположенной напротив фок-мачты) (см. рис. 436, b).

Стаксель и кливер-галсы. Галсы грота-стакселя и грот-стеньгистакселя крепили на бугеле фок-мачты; галс грот-брам-стакселя— на огонах стоячего такелажа на топе фок-мачты, галс

бизань-стакселя — на бугеле грот-мачты, крюйс-стеньги-стакселя — на крюйс-штаге и крюйс-брам-стакселя — на грот-марсе¹ (см. рис. 434).

Галс бом-кливера вели через отверстие в утлегаре и крепили на «бушприт-виолине». Галс кливера крепили на кливер-галсрыме утлегаря.

Галс среднего кливера закрепляли на ноке бушприта, а галс фор-стеньги-стакселя — на бушприте между фока-штагом и фоклось-штагом (см. рис. 435).

БУЛИНИ

Булини — это тросы, которые служат для оттягивания к носу наветренных шкаторин прямых парусов, если судно идет в бейдевинд. На современных парусных судах булини применяют только на нижних парусах. Булини соединяют с парусом с помощью булинь-шпрюйтов или булинь-анапутей (см. рис. 324).

Фока-булини — это простые снасти, один конец которых прикрепляют к шпрюйту, а второй проводят через блок на фокаштаге и крепят на утке, стоящей на баке.

Грота-булини крепят на нижнем конце грота-штага, проводят через блок, строп которого может скользить по шпрюйту булиня, и затем закрепляют на утке фальшборта.

БУЛИНИ СТАРИННЫХ СУЛОВ

Раньше все прямые паруса имели булини, которые крепили к боковым ликам парусов при помощи шпрюйтов. Лишь блинд, который при бейдевинде ставили вообще редко, натягивали с помощью тяжелых ядер, подвешенных в его шкотовых углах.

Грота-булини. Наветренный булинь проводили через канифасблок, находящийся на носовых релингах, и закрепляли вблизи фокмачты на утке.

Подветренный булинь был подвешен на релингах бака. В XVII в. булини проводили через канифас-блок, установленный у основания фок-мачты (рис. 437).

Грот-марса-булини вели через блок, укрепленный под марсом фок-мачты, затем через второй блок на последней кормовой ванте фок-мачты и крепили на утке под этой вантой. Заметим, что булини при проводке перекрещивались (см. рис. 437).

Грот-брам-булини проводили через коуш (или вант-клотень), укрепленный под брам-штагом, затем через блок на фор-стеньге и далее через марс и крепили на утке под кормовой фок-вантой. Эти булини при проводке тоже перекрещивались (см. рис. 437).

Грот-бом-брам-булини. Каждый булинь проводили через коуш, укрепленный на брам-штаге, затем вдоль штага вниз на блок на фор-стень-вантах, через фор-марс, вант-клотень на фокаванте и, наконец, закрепляли с внутренней стороны борта около вант.

Фока-булини проводили через трехшкивный блок на ноке утлегаря, затем через одношкивный блок на «бушприт-виолине», через блок на боканце и крепили на носовых релингах (рис. 438). В XVII в. их проводили через блок, укрепленный на оконечности бушприта, и крепили на носовых релингах.

Фор-марса-булини вели через коуш, установленный на фор-брам-штаге приблизительно в 3 м от углегаря, затем через небольшой блок, укрепленный на стропе трехшкивного блока, и через коуш

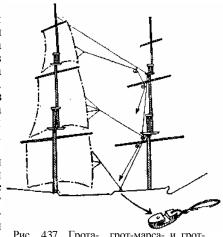


Рис. 437. Грота-, грот-марса- и грот-брам-булини.

на месте крепления фока-штага. Потом их проводили через направляющий блок ватер-вулинга бушприта или через блок на грот-краг-штаге и крепили на носовых релингах (см. рис. 438). В XVII в. эти булини проводили так же, как и фока-булини.

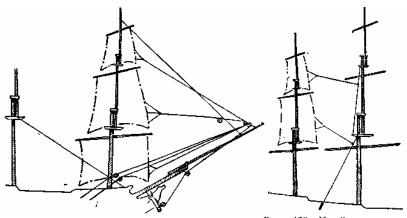


Рис. 438. Фока-, фор-марса- и фор-брам-булини.

Рис. 439. Крюйс-марса- и крюйс-брам-булини.

¹ Речь идет о нижних галсовых углах парусов.

Фор-брам- и фор-бом-брам-булини проводили так же, как и формарса-булини (см. рис. 438).

Крюйс-марса-булини вели к грота-вантам на блоки, находившиеся под швиц-сарвенями, затем к блокам внутри фальшборта и крепили на утках. При этом булини перекрещивались (рис. 439).

Крюйс-брам-булини вели к блоку на грот-стень-вантах, далее через марс вниз и крепили на утке у крюйс-марса-булиня; при этом булини перекрещивались (см. рис. 439).

ГИТОВЫ И ГОРЛЕНИ

Гитовы и гордени представляют собой простые тросы, прикрепленные к углам или шкаторинам паруса и предназначенные для его подтягивания к рею или мачте, т. е., как говорят моряки, для взятия паруса на гитовы и гордени.

Прямые паруса вооружают гитовами, бык-горденями и нокгорденями; латинские паруса, стаксели и кливера—только ниралами; трисели — верхними, коренными и нижними гитовами.

ГИТОВЫ И ГОРДЕНИ НИЖНИХ ПАРУСОВ

Гитовы представляют собой двойные или одинарные гордени, которыми подбирали шкотовые углы паруса. На старинных судах неподвижный блок горденя крепили на ракс-бугеле, а подвижный — в шкотовом углу. Коренной конец снасти закрепляли на блоке ракс-бугеля, затем лопарь проводили к блоку в шкотовом углу, снова к неподвижному блоку и далее вниз к пяртнерсу мачты, где крепили на нагельной планке у мачты (рис. 440). На современных парусных судах гитов крепят на ноке рея, а неподвижный блок — на нижнем ушке оковки нока рея. Гитов ведут через блок в шкотовом углу и неподвижный блок на ноке рея через блок, укрепленный посредине рея или на ракс-бугеле, а затем вниз к пяртнерсу мачты (рис. 440).

Бык-гордени — это простые тросы, которые крепят к кренгельсам нижней шкаторины, ведут по передней стороне паруса — изнанке — вверх, через блоки на носовой кромке марса, а затем спускают вниз к пяртнерсу мачты, где закрепляют на нагельной планке. На современных больших судах бык-гордени проводят через беготки — деревянные направляющие кольца, пришитые к парусу, затем через маленькие блоки на леере рея, блоки под марсом и вант-клотни на вантах вниз к нагельной планке фальшборта (см. рис. 440, b).

Нок-гордени — это простые тросы, которые по одному крепят к боковым шкаторинам паруса. Их вели по передней стороне паруса, через блоки под марсом и далее вниз на нагельную планку фальшборта. На современных больших парусных судах нок-гор-

день проводят через блок на леере рея, блок под марсом и через вант-клотень на ванте к нагельной планке фальшборта (см. рис. 440),

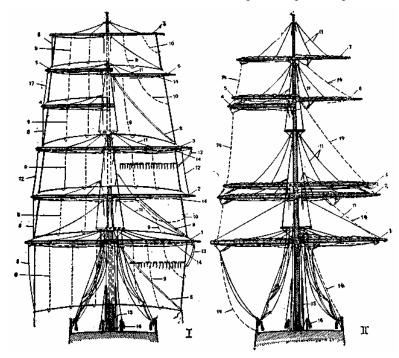


Рис. 440. Гитовы прямых парусов большого парусного судна типа клипера.

1 — с поставленными парусами; II — с убранными парусами (слева показано вооружение с двойными марселями и брамселями, справа — вооружение с двойными марселями и одинарным брамселем).

двоиными марселями и орамселями, справа — вооружение с доливани марселями и одинарным брамселем).

1 — нижний рей; 2 — нижний марса-реи; 3 — верхний марса-реи; 4 — нижний брам-рей; 5 — брам-рей; 7 — бом-брам-рей; 8 — гитовы; 9 — бык-гордени; 10 — нок-гордени; 11 — топенанты; 12 — гитовы верхнего марсели; 13 — риф-тали; 14 — шкоты; 15 — марса-шкот-тали; 16 — кофель-нагельная планка; 17 — гитовы верхнего брамселя.

ГИТОВЫ И ГОРЛЕНИ МАРСЕЛЕЙ

Нижние марсели, как и нижние паруса, имеют гитовы, на верхних марселях их нет.

Бык-гордени на старинных парусниках проводили или по одной, задней, стороне паруса — лицу — или по обеим сторонам. В последнем случае их крепили за нижний лик почти посредине паруса, вели вверх по его передней стороне до половины высоты, затем через отверстие в парусе пропускали на заднюю сторону, через блок на рее и оттуда к нагельной планке фальшборта.

На современных парусных судах бык-гордени марселей проводят по передней стороне паруса, как и на нижних парусах, через два блока на рее: один — над местом крепления горденя, а другой — посредине рея. Затем поднимают вдоль мачты вверх, ведут через блок под салингом, а оттуда вниз к нагельной планке фальшборта через вант-клотни на вантах. На больших парусниках быкгордени марселей проводят так же, как бык-гордени нижних парусов (см. рис. 440).

Нок-гордени ставят только на больших парусных судах на нижних марселях. Их соединяют с бык-горденями.

ГИТОВЫ И ГОРДЕНИ БРАМСЕЛЕЙ И БОМ-БРАМСЕЛЕЙ

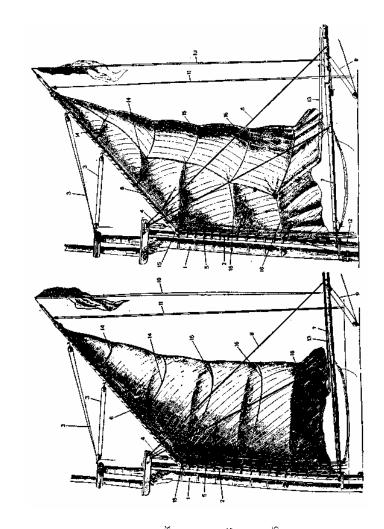
Гитовы имеются на нижнем брамселе, на верхнем их нет. Гитовы бомбрамселей являются простыми горденями.

Бык-гордени нижних и верхних брамселей и бом-брамселей проводят так же, как и на остальных парусах.

Нок-гордени на нижних и верхних брамселях отсутствуют. Парусные суда с одним брамселем имели нок-гордени, заведенные так же, как и нок-гордени на других парусах. Бом-брамсели на больших парусниках имеют нок-гордени, в некоторых случаях они соединяются с бык-горденями (см. рис. 440).

ГИТОВЫ КЛИВЕРОВ И СТАКСЕЛЕЙ

Нирал — единственный гитов этих парусов. Проводка его несложна: верхний конец нирала с помощью двойного гака — храпцев — или кнопа закрепляют в фаловом углу паруса, ведут вниз через одну или две беготки, укрепленные на леере или штаге и, как правило, крепят у основания мачты (см. рис. 411 и 412).


ГИТОВЫ ТРИСЕЛЕЙ И ГАЛФ-ТОПСЕЛЕЙ

Верхние гитовы крепят к верхней половине задней шкаторины паруса, проводят через блоки, установленные под гафелем и его усами, и далее к основанию мачты, где закрепляют на мачте или нагельной планке.

Коренные гитовы крепят посредине задней шкаторины паруса, ведут через блок под усами гафеля, далее вниз и закрепляют там же, где и верхние гитовы.

Нижние гитовы крепят на нижней половине задней шкаторины, проводят через блок, прикрепленный к сегарсу паруса, и далее вниз к нагельной планке или на мачту (рис. 441).

Если трисель ходит по погону гафеля, то его вооружают ниралом и нижними гитовами, проводят так же, как показано выше (см. рис. 413).

гис. 441. Бетучии такел триселя (вид с лицевой изнаночной сторон).

1 — бизань-мачта: 2 — три- сель-мачта: 3 — дири- фал;

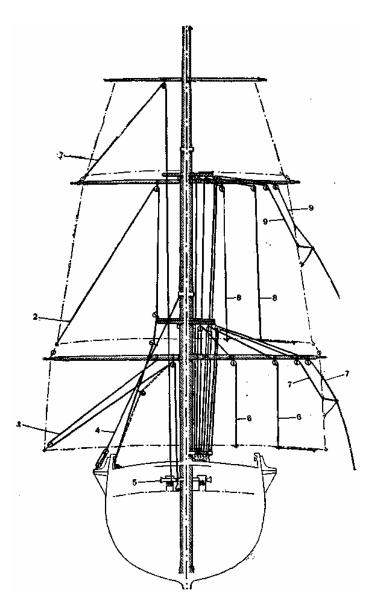


Рис. 442. Гитовы и гордени прямых парусов старинного судна.

1 — гитовы нижнего паруса; 2 — гитовы марселя; 3 — гитовы брамселя; 4 — ванта; 5 — битенг; 6 — бык-гордени нижнего паруса; 7 — нок-гордени нижнего паруса; 8 — бык-гордени марселя; 9 — нок-гордени марселя.

Гитов галф-топселя крепят в шкотовом углу паруса, проводят через беготку посредине нижней шкаторины, затем через блок в фаловом углу и далее вниз на нагельную планку у мачты.

Бермудские паруса имеют лишь простые ниралы.

ГИТОВЫ И ГОРДЕНИ СТАРИННЫХ СУДОВ

Паруса на старинных судах тоже имели гитовы, нок-гордени и бык-гордени, а именно: латинские паруса, стаксели и кливеры — ниралы; паруса трапециевидной формы — такие же гитовы, как и трисели современных парусников.

ГИТОВЫ И ГОРДЕНИ НИЖНИХ ПАРУСОВ

В каждом шкотовом углу есть свой гитов. Его коренной конец крепят на рее недалеко от мачты, ведут к блоку в шкотовом углу паруса, затем снова к рею. После этого гитов проводят через блок, находящийся вблизи места крепления коренных концов, и через блок, закрепленный на вантах, вниз, где крепят на утке или

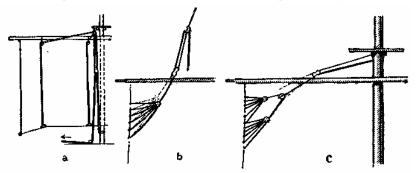


Рис. 443. Гордени нижних парусов старинных судов: а — бык-гордени, XVII—XVIII вв.; b — нок-гордень со шпрюйтами и анапуть-блоками, XVII в.

нагеле у фальшборта. На английских судах лопарь проводят вдоль мачты на ее нагельную планку (рис. 442).

Бык-горденей четыре: по два на каждой половине паруса. Первый (ближе к краю) бык-гордень крепят на нижней шкаторине, почти рядом со шкотовым углом, и ведут вдоль нее через несколько коушей, затем по передней стороне паруса поднимают вверх, проводят через блок на рее и другой блок под салингом марса и далее вниз на нагельную планку у мачты. Второй бык-гордень (ближе к середине) от нижней шкаторины ведут вертикально вверх и далее так же, как первый бык-гордень (см. рис. 442).

Проводка бык-горденей на английских судах показана на рис. 443, а.

Нок-горденей тоже четыре: по два на боковых шкаторинах. Первый крепят на боковой шкаторине посредине паруса на шпрюйте булиня, второй — несколько выше. Затем нок-гордени проводят через одношкивные блоки на рее и через двухшкивный блок на салинге марса и вниз, где крепят на нагельной планке у мачты (см. рис. 442 и 443).

ГИТОВЫ И ГОРДЕНИ МАРСЕЛЕЙ

Гитовы крепят в шкотовом углу паруса, проводят через блок на рее и через блок на марсе, затем спускают рядом с нижними вантами вниз, ведут через блок, закрепленный на крайней ванте, и крепят на утке фальшборта (см. рис. 442).

Бык-гордени проводят так же, как и гордени на нижнем парусе. Лопари горденей ведут через блоки, установленные на краспицах салинга, и через блок на огоне штага. Затем их пропускают через марс и коуши на швиц-сарвенях и крепят на нагельной планке у основания мачты (см. рис. 442).

Нок-гордени крепят там же, где и нок-гордени нижних парусов. Их лопари, пропустив через блоки на краспице салинга, ведут через блок, установленный на огоне стень-штага, затем вдоль мачты вниз, через марс, коуши на швиц-сарвенях и крепят на нагельной планке у основания мачты (см. рис. 442).

ГИТОВЫ БРАМСЕЛЕЙ

Гитовы крепят в шкотовых углах паруса, проводят через блок на рее и через коуш на краспице салинга, затем через марс и крепят рядом с гитовами марселя (см. рис. 442).

ГИТОВЫ И ГОРДЕНИ БЛИНДА И БОМ-БЛИНДА

Гитовы блинда от шкотовых углов паруса проводят через два блока, один на блинда-рее, а другой на бушприте, затем через направляющие блоки ватер-вулинга бушприта и крепят на носовых релингах.

Бом-блинда-гитовы проводят через блок на рее, затем через коуш (или блок) на «бушприт-виолине», через направляющие блоки ватер-вулинга бушприта к носовым релингам.

Бык-гордени блинда проводят так же, как бык-гордени марселя. Гордени ведут через ватер-вулинг бушприта и крепят на релингах носа. Бом-блинд, нижние брамсели, верхние брамсели, крюйсель и крюйс-брамсель не имеют ни нок-, ни бык-горденей, а только гитовы (рис. 444).

ГИТОВЫ БИЗАНИ

У бизани пять или шесть гитовов, которые крепят к задней шкаторине паруса, затем проводят через блоки, установленные вдоль

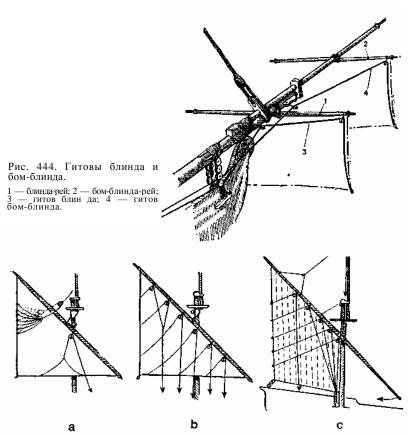


Рис. 445. Гитовы бизани: a — c анапуть-блоками, XV—XVI в.: b — упрощенные, XVI в.: c - XVII в.

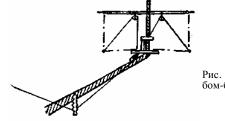


Рис. 446. Гитовы бом-блинда-бовена.

рея, и закрепляют у основания бизань-мачты. Заметим, что нижний гитов бизани называют «двойным» (рис. 445).

Гитовы бом-блинда-бовена проводят так, как показано на рис. 446.

БЕГУЧИЙ ТАКЕЛАЖ ДОБАВОЧНЫХ ПАРУСОВ

Фалы. Ундер-лисель имеет два фала: внешний и внутренний прикрепленные к лисель-спиртам. На марса- и брам-лиселях — по одному фалу. Крепят их на нагельной планке у основания мачты (см. рис. 312 и 313).

Шкоты и галсы. Шкоты лиселей простые, их ведут от шкотовых углов паруса вниз к нагельной планке фальшборта. Галсы тоже простые и работают, как брасы (см. рис. 312). Добавочные паруса старинных судов имеют аналогичные такелаж и проводку (см. рис. 312).

• ВООРУЖЕНИЕ МОДЕЛИ ТАКЕЛАЖЕМ

Вооружение модели такелажем представляет определенные трудности, поэтому в данном случае очень большое значение имеет опыт судомоделиста.

После того как будут установлены мачты на модели, можно вооружать их стоячим такелажем. Ванты ставят парами: одну пару на правый борт, другую на левый. Юферсы ставят с помощью шаблонов (см. рис. 354, b), которые изготовляют из стальной проволоки. Положив пару вант на мачту, вставляют шаблоны в юферсы вант-путенсов и вант-юферсы; предварительно юферсы вантпутенсов должны быть укреплены на руслени. Закрепляют вантюферсы на вантах и, поставив временную связку между вантюферсами и юферсами вант-путенсов, снимают шаблоны с вант затем переходят к следующей паре вант и т. д. После установки вант и их выравнивания приступают к вооружению юферсов Для этого через их отверстия пропускают лопари (см. рис. 359)! Выбленки вяжут из тонкого шнура или хлопчатобумажной нити: продевают их в иглу и выполняют узлы так, как показано на рис. 364. b. Для того чтобы расстояния между соседними выбленками были одинаковыми, по вантам снизу вверх передвигают бумажный шаблон.

Установив стоячий такелаж (включая штаги), проводят бегучий такелаж в следующем порядке: фалы реев, брасы, шкоты галсы и, наконец, после того как будут закреплены паруса на реях, гитовы. Заметим, что реи ставят на мачты без парусов.

Автор надеется, что приведенные выше описания проводки такелажа, хотя и краткие, все же послужат руководством в работе судомоделиста.

Глава XIII ЯКОРЯ, МАЛЫЕ ПЛАВУЧИЕ СРЕДСТВА И РУЛИ

ЯКОРЯ В ДОИСТОРИЧЕСКУЮ ЭПОХУ

Кто являлся изобретателем якоря и какую форму якорь первоначально имел, сейчас трудно сказать. Слово «якорь» (по-латински апсога) означает, вероятно, сгибать.

Первым якорем, по-видимому, можно считать массивный предмет, который привязывали к лодке при помощи троса. Об этом свидетельствуют дошедшие до нас изображения.

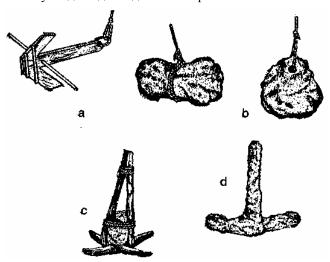


Рис. 447. Якоря: а — китайский, 2200 г. до н. в.: b - из камня; c, d — доисторические.

Китайцы применяли якоря, по-видимому, еще в 2200 г. до н. э. Подобные примитивные приспособления они используют еще и сегодня на джонках (рис. 447, а).

Египтяне 2500 лет до н. э., для того чтобы уменьшить скорость судна при плавании по Нилу, спускали с кормы привязанные камни, которые «пахали дно» и тем самым тормозили движение судна. Таким же образом поступали греки: они крепили камни по бортам

судна и при необходимости опускали их на веревках на дно (рис. 447, b). Об этом известно из песен Гомера.

Древние римляне тоже применяли камни, но больше для удержания судна на месте, чем для торможения. Кроме того, они использовали мешки из шкур, ивовые корзины или другие плетеные устройства, наполненные камнями.

На шлюпках и сейчас в качестве якоря иногда используют камни. Рыбаки обычно применяют кожаные мешки с гравием Одну веревку они привязывают к верхнему углу мешка, другую — к нижнему. Потянув за последнюю, можно, легко опрокинуть мешок и высыпать камни.

Рассмотрим два типа доисторических якорей. Первый якорь (рис. 447, с) состоял из двух горизонтальных перекрещивающихся балок и двух вертикальных. Между последними помещался большой камень.

Второй якорь уже более похож на поздние. Он высечен из целого камня. Эту форму якоря приписывают китайцам.

Необходимо отметить, что скорость торможения этих якорей зависела только от их веса. Главной же целью их спуска было как можно крепче зацепиться за морское дно.

ЯКОРЯ В АНТИЧНОЕ ВРЕМЯ

Появление якоря в том виде, в каком мы его себе представляем относят к V в. до н. э., однако относительно имени его изобретателя мнения исследователей расходятся. Плиний, например, приписывает изобретение якоря греку Евлампию (?), другие утверждают что его изобрел царь Мидас.

В античное время якоря изготовляли из дерева. Деревянное тело якоря — веретено — вставляли в середину деревянной поперечины — штока, по всей длине которого проходило отверстие выжженное раскаленным металлом и заполненное свинцом (рис. 448, а). Иногда на конце штока, тоже заполненного свинцом делали железный рог. Позднее были введены (возможно, Плинием или философом Анахарсисом) второй рог на якоре и треугольные стрелообразные накладки на рогах — лапы.

Шток служил для того, чтобы рога якоря не ложились на морское дно горизонтально. Римляне делали его из сплава свинца и сурьмы и закрепляли на веретене при помощи двух прямоугольных отверстий. Подобный якорь был найден на озере Неми.

В настоящее время известно много экземпляров подобных штоков. Они были найдены в разных частях Европы, от Италии до Англии, даже в Скандинавии, и хранятся в музеях (рис. 448, b).

Можно предполагать, что якоря подобного типа применяли довольно продолжительное время.

С развитием техники выплавки железа якорь начинают делать железным, хотя штоки могли быть и металлическими, и деревян-

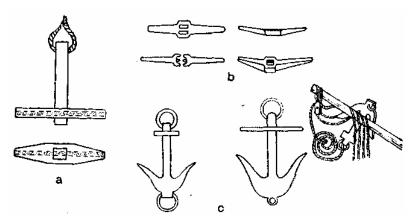


Рис. 448. Якоря: а — греческий; b — свинцовые штоки римских якорей: с — римский (по рельефам).

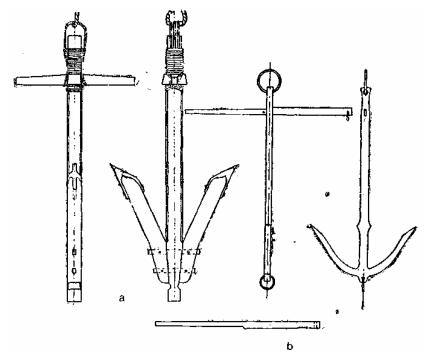


Рис. 449. Якоря римских судов, найденные в озере Неми: а — из дерева со штоком из свинца; b — железный с подвижным штоком.

ными. На обоих концах веретена у этих якорей было по рыму Назначение нижнего рыма до сих пор неизвестно, возможно, он служил для крепления якоря у борта (рис. 448, с)'.

На озере Неми был найден якорь, полностью изготовленный из железа, шток которого был подвижным, как на более поздних адмиралтейских якорях (рис. 449).

На вооружении судна находилось обычно несколько якорей. Например, на «Александрии» Герона было четыре якоря из дерева и восемь из железа, на аттических триерах сперва имелось четыре, а позднее два, вес которых колебался от 50 до 200 кг. Наиболее тяжелый и прочный якорь называли «священным», так как на него «возлагали все надежды». Обычно его отдавали сноса, где он висел на двух выступавших за борт балках, реже — с кормы.

Якоря рассмотренных типов применяли до Х в.

СРЕДНЕВЕКОВЫЕ ЯКОРЯ. УСОВЕРШЕНСТВОВАННЫЕ ЯКОРЯ

В средние века изготовляют только железные якоря с деревянными штоками. Судя по изображениям на миниатюрах старинных рукописей, монетах, печатях и картинах, можно с уверенностью сказать, что практически до XVIII в. форма якорей не менялась. Происходили лишь некоторые изменения в технике их изготовления.

В XIV в. входит в употребление четырехрогий якорь, который, однако, для больших судов был малопригоден. Такие якоря применяли в основном на галерах.

Первоначально якоря современной формы англичане называли old plain — старым простым или long shanked — длинноверетенным. На рис. 450 изображен железный якорь первой половины XVIII в. с деревянным штоком. Он почти не отличается от якорей, применявшихся в средние века. Изготовляли его в соответствии с широко распространенными в раннем судостроении пропорциями (3:1) — его веретено было в три раза длиннее рога, а длина штока равна длине веретена.

Веретено делали из нескольких железных стержней (или полос), сваренных вместе. Обычно на сердцевину веретена шло четыре стержня, к которым добавляли более тонкие для достижения необходимой толщины. После ковки сечение веретена приобретало почти прямоугольную форму с закругленными краями. Верхний конец веретена, равный 1/16 его длины, имел квадратное сечение. Эта часть — шейма — служила для крепления штока, поэтому

на ней с двух сторон имелись выступы — заплечики или орехи, на которых лежал шток. В шейме находилось отверстие — ухо, через которое пропускали рым.

Нижнюю часть веретена — лоб, ворот или тренд — делали увеличенной толщины, для того чтобы в ней можно было сделать вырезы для крепления рогов. Рога якоря изготовляли отдельно таким же образом, как и веретено, а затем приваривали к веретену.

Лапы якоря имели форму равнобедренного треугольника: боковые стороны были приблизительно на 1/3 длиннее основания.

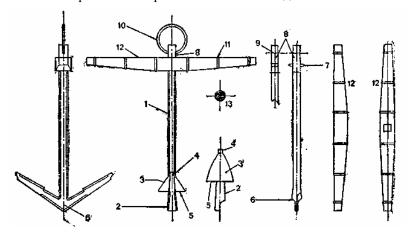


Рис. 450. Якорь XVIII в.

1— веретено; 2 — рога; 3 — лапы; 4 — носок рога; 5 — основание лапы; 6 — тренд 7 — заплечики; 8 — шейма; 9 — ухо веретена; 10 — рым; 11 — бугели штока; 12 — шток; 13 - поперечное сечение веретена, изготовленного из железных стержней

Шток делали из двух дубовых брусов, которые надевали на шейму и скрепляли четырьмя или шестью железными бугелями, поставленными на брусья в горячем состоянии. Шток якоря к краям суживался: в середине его высота составляла $^{1}/_{12}$ его длины, а на концах — $^{1}/_{24}$. Ранее шток, вероятно, изготовляли из одного бруса.

Существовали якоря с изогнутыми рогами, которые применяли в основном на торговых судах, но наиболее распространенными были якоря с прямыми рогами. Они находились на вооружении военных судов вплоть до 1820 г. Позднее от них отказались вследствие частых аварий судов, возникавших при их использовании. В 1810 г. в Англии был даже издан специальный закон, касающийся прочности и надежности судовых цепей и якорей.

К началу XIX в. относятся первые исследования, которые привели к значительным изменениям в конструкции традиционных якорей. Важнейшими из них были появление подвижного

¹ Л. Н. Скрягин, с. 23—24. «Второй рым или просто отверстие есть и на многих современных литых якорях. К нему крепится буйреп — прочный конец с поплавком — томбуем. Буйреп нужен для подъема якоря, если оборвется якорь-цепь или якорный канат».

штока, затем поворотных рогов, отказ от штока (перечислены в порядке их введения). Кроме того, стали применять стальное литье для изготовления якорей.

В 1830 г. лейтенант английского военно-морского флота Роджер после многолетних исследований и опытов предложил новую конструкцию якоря, который стали называть его именем. Якорь Роджера, который применяли до последнего времени, можно отличить от других по наличию железного штока с квадратным отверстием посредине. Этим отверстием шток надевали на шейму

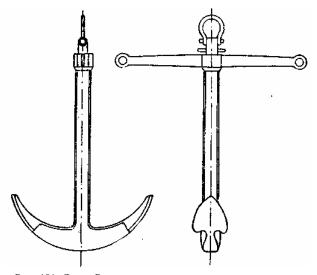


Рис. 451. Якорь Роджера.

веретена и затем шплинтовали. Для того чтобы снять шток, необходимо было удалить рым, поэтому позднее его заменили скобой. Шток мог быть и деревянным (рис. 451).

К 1840 г. относится появление адмиралтейского якоря ', который применяют и в настоящее время. Его изобретатель — англичанин Уильям Паркер. Веретено и рога этого якоря, а также шток в поперечном сечении эллиптические; рога изогнуты по окружности; лапы значительно меньших размеров, чем лапы прежних якорей. Железный шток подвижной. Почти посредине его находится прилив, который удерживает шток с одной стороны на веретене, с другой стороны вставляют чеку. У адмиралтейского

якоря отношение длины веретена к рогу осталось такое же, как у предшествовавших ему (рис. 452).

Работает отданный якорь следующим образом. Якорь падает на дно (его шток располагается горизонтально), причем наиболее

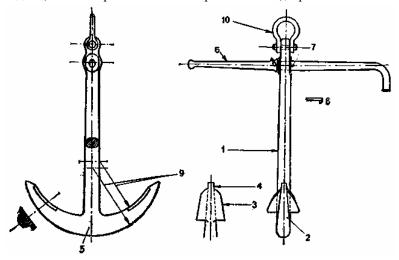
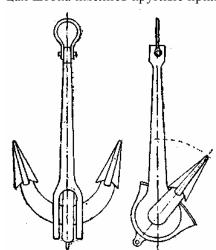


Рис. 452. Адмиралтейский якорь.

1— веретено; 2— рога; 3— лапы; 4— носок рога; 5— тренд; 6— подвижный шток; 7— штырь скобы; 8 - чека; 9 - радиусы кривизны рогов; 10— скоба якоря.

тяжелая часть (тренд с рогами) находится внизу. Так как рога якоря одинакового веса, то первой касается грунта пятка тренда. Под натяжением якорного каната якорь ложится на грунт, и если его шток горизонтален, лапа зарывается в него. Если же грунта коснулся конец штока, то под натяжением каната якорь поворачивается на конце штока и лапа якоря входит в грунт.

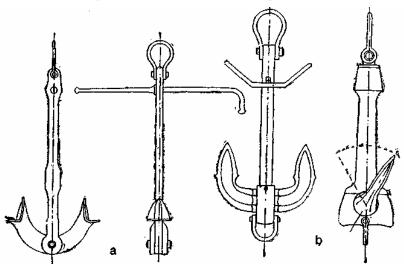

СОВРЕМЕННЫЕ ЯКОРЯ

К 1821 г. относится изобретение Гаукинсом якоря с поворотными рогами и без штока (рис. 453). Рога якоря поворачивались на штыре, установленном в нижнем вилкообразном конце веретена. Концы рогов были без лап и заканчивались стрелообразными наконечниками. Однако прошло почти полстолетия, прежде чем изобретение Гаукинса было успешно претворено в жизнь французом Ф. Мартином.

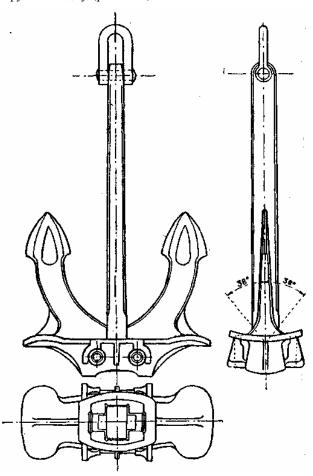
В 1846 г. англичанин Тротман предложил делать якорь с качающимися рогами, который применяли на паровых судах до конца XIX в. У этого якоря в грунт зарывается только одна лапа, другая, поворачиваясь, прижимается к веретену и переносит тем самым точку опоры рабочей лапы с тренда на его середину, что

¹ Адмиралтейский якорь появился в 1852 г. Его конструкцию разработали инженеры английского Адмиралтейства на основе якорей Перинта, Паркера и др.

увеличивает держащую силу якоря. Вначале шток этого якоря делали деревянным, а затем из железа круглого профиля: на концах штока имелись круглые приливы (рис. 454, а).



В 1875 г. Мартин предложил якорь с коромысловыми рогами (их ковали целиком из одного куска железа), которые могли поворачиваться на 30—40° относительно веретена. Шток якоря был выполнен в виде железной полосы, которая увеличивала сцепление лап с грунтом (рис. 454, b).


В это время появляются многочисленные виды якорей. В Англии в 1885 г. Адмиралтейство провело серию испытаний и опытов для выявления лучшего якоря. Им был признан несколько видоизмененный якорь Мартина.

В 1891 г. английское Адмиралтейство испытало якоря

Инглефильда, Холла, Байерса и др. Их отдавали с одного и того же судна поочередно, и место падения отмечали буйком. Затем машина судна работала двадцать минут средним ходом назад,

в течение которых водолаз следил в воде за маневром и определял положение якоря. На этот раз предпочтение было отдано якорю Холла, который глубоко зарывался в грунт, пройдя лишь несколько футов по дну (рис. 455).

В 1892 г. испытания с теми же якорями были проведены в Вильгельмсхафене в Германии. Удобство работы с якорем Холла подтвердилось, однако его держащая сила оказалась меньше, чем якоря Инглефильда (рис. 456, а).

На рис. 456, b показаны некоторые виды якорей, которые применяют в настоящее время. Кроме них существуют и другие, на-

пример однорогий якорь адмиралтейского типа, который служит для установки бочек, т. е. используется как мертвый якорь (рис. 457, а). Существуют еще маленькие четырехрогие якоря без штока — кошки (рис. 457, b), а также четырехрогие якоря без лап (рис. 457, c).

Упомянем еще о плавучих якорях, которые применяют при непогоде на судах и шлюпках для их удержания вразрез волне.

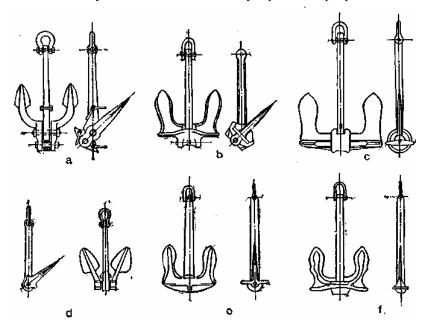


Рис. 456. Современные якоря: а — Инглефильда; b — Болдта; с — «Адмирал»; d — Марреля; е — Ансальдо; f — F.M.A. (Миланских сталеплавильных предприятий).

Раньше их изготовляли из квадратного куска парусины, который натягивали между двумя перекрещенными железными или деревянными балками, их длина составляла половину длины бимсов у грот-мачты. От концов балок проводили тросы, которые посредине крепили к толстому перлиню. К нижнему концу плавучего якоря подвешивали груз, а к верхнему — якорный буй (томбуй), чтобы якорь в воде находился на определенной глубине.

Вооружение судов **якорями.** Как уже было сказано, на судах греков и римлян находилось несколько якорей на борту. Их число зависело от размеров судна. В средние века суда имели от четырех до шести якорей общим весом 10—20 ц.

В XVII в. английские суда вооружали четырьмя носовыми или становыми якорями, двумя верпами и одним стоп-анкером'. Вес верпа равнялся $^{1}/_{3}$ веса станового якоря.

В XVIII в. каждое судно обычно несло шесть якорей: наибольший якорь — бухт (его называли якорем надежды) — помещали после одного из носовых якорей. Вторым по величине был запасной якорь — шварт («почтенный» якорь); хранился в носовой

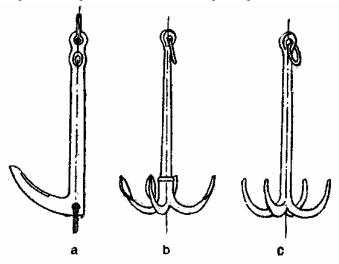


Рис. 457. Малые якоря: а — однорогий; b — кошка; с — четырехрогий.

части у грота-люка. Передние носовые якоря: плехт (второй или верповочный) и дагликс (постановочный или швартовный) висели в носовой части: первый — по правому борту, а второй — по левому.

Два стоп-анкера, которые вместе весили меньше, чем плехт, подвешивали за носовым якорем напротив бухта, чтобы несколько уравновесить его вес. На галерах применяли четырехрогие якоря.

В настоящее время каждое судно вооружают двумя становыми якорями (их размещают в носовой части судна), готовыми к отдаче, одним или двумя запасными (они находятся на палубе, а на военных судах висят за бортом) и, по крайней мере, двумя стопанкерами, которые применяют главным образом при маневрах судна в узкостях.

Вес якорей, необходимых для вооружения того или иного судна, определяют исходя из его общего объема, а у военных судов — исходя из их водоизмещения.

¹ Верпы и стоп-анкеры представляют собой небольшие якоря обычного типа, самый тяжелый верповый якорь называют стоп-анкером.

СНАРЯЖЕНИЕ СТАРИННЫХ ЯКОРЕЙ

На старинных якорях рым в месте соединения с якорным канатом для предохранения последнего от перетирания обматывали кусками старой парусины — клетневины, пропитанной тиром, а сверху — тонким концом — клетнем (рис. 458, а). Обычно при клетневании шлаги клетня укладывали вплотную друг к другу (на рис. 458 по клетневине поставлены бензели). В снаряжение якорей входили пентер-штерты и буйреп,

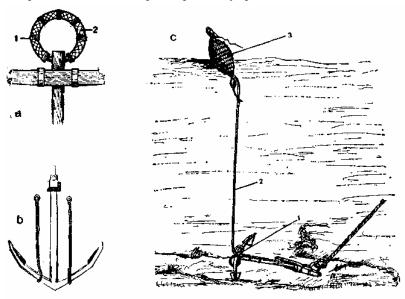


Рис. 458. Старинные якоря: а — оклетневанный рым.
1 - бензели; 2 — клетневина;
b — пентер- или фиш-штерты; с — буйреп с томбуем.
1 - крепление буйрепа; 2 - буйреп; 3 - томбуй.

Пентер- или фиш-штерты — это два троса, укрепленных на рогах якоря с помощью огонов и имеющих на противоположных концах железные коуши. В коуши заводили пентер-гак фиш-талей, чтобы якорь, висящий на крамболе вертикально, можно было перевести в горизонтальное положение для закрепления на борту (рис. 458, b).

Буйреп — это трос, прикрепленный к тренду якоря с помощью небольшого стропа. К другому концу буйрепа присоединяли якорный буй — томбуй, отмечавший положение отданного якоря. Буйреп применяют и на современных парусных судах (рис. 458,с).

ЯКОРНЫЕ КАНАТЫ

Якорный канат — это крепкий трос, служащий для постановки судна на якорь и верпования (верповать — тянуть судно при помощи якоря). Канаты выбирают в зависимости от веса якоря: 14 дюймов (35,6см) — для якорей весом 3—4т, 24 дюйма (61 см) — для якорей весом 7—8 т. Самый мощный канат называют бухтовым, далее по мере уменьшения толщины следуют плехтовый

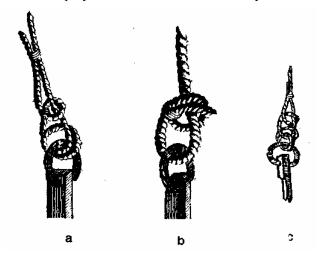


Рис. 459. Якорные узлы: а — штык со шлагом; b — полуштык; с — рыбацкий штык.

и дагликсовый. Для небольших якорей предназначены малые якорные канаты и перлини.

До середины XVI в. суда были сравнительно небольшими, поэтому применяли легкие якоря и относительно слабые якорные канаты. Якорный канат соединяли с рымом штыком со шлагом; позднее этот узел применяли на малых судах и стали называть перлиневым (рис. 459, а).

Со второй половины XVI в. суда становятся больше, поэтому в употребление входят более мощные якорные канаты, а вместо сложных узлов вроде перлиневого вяжут более простые, например полуштык, который после 1660 г. на больших судах становится обычным. На якорях галер и малых судах вязали рыбацкие штыки (рис. 459, b, c).

ЦЕПИ

На судах применяют два вида цепей: такелажные, без распорок в звеньях—контрфорсов (в механизмах для подъема тяжестей, фалов, ватер-штагов и т. д.), и якорные — с контрфорсами. В се-

редине XVIII в. на смену мощным тросам пришли цепи, однако всеобщее признание они получили значительно позже. Впервые якорные цепи появились на английском судне «Кент», спущенном на воду в 1814 г.

Контрфорсы в звенья якорь-цепей были введены позднее, около 1840 г. Величина звеньев зависела от диаметра или, другими словами, от калибра цепи.

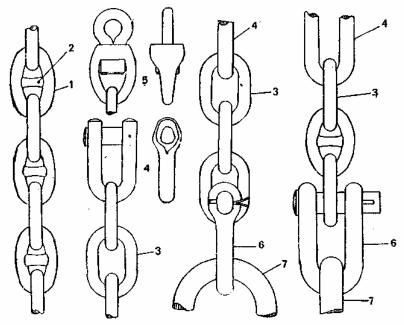


Рис. 460. Цепи.

1 — звено; 2 — контрфорс; 3 — концевое звено; 4 — соединительная скоба; 5 — вертлюг; 6 - якорная скоба; 7 — скоба якоря.

Цепи изготовляют кусками определенной длины, так называемыми смычками. Длина смычки в Италии составляет 25 м, в Англии 27,43 м¹. Смычки заканчиваются концевыми звеньями без контрфорсов, которые скрепляют друг с другом при помощи соединительной скобы. Чтобы избежать закручивания цепи, если судно ходит вокруг якоря, некоторые смычки соединяют друг с другом особым звеном — вертлюгом. Оно имеет кольцо со штырем, который может свободно вращаться вокруг своей оси. Рым или скобу якоря соединяют с цепью при помощи якорной скобы (рис. 460).

Хранят цепи на судне в специальном помещении — цепном или канатном яшике.

ИЗГОТОВЛЕНИЕ ЯКОРЕЙ И ЦЕПЕЙ ЛЛЯ МОЛЕЛИ

Якоря изготовляют из листа неочищенной латуни, толщина которого равна толщине веретена и рогов. Якорь вычерчивают на металлическом листе чертилкой и вырезают при помощи слесарной пилы или лобзика. Окончательно обрабатывают его напильниками, строго соблюдая размеры чертежа.

Лапы якоря тоже вырезают из латунной пластины соответствующей толщины и припаивают к рогам.

Шток выполняют из двух деталей и ставят на веретено с металлической оковкой. Просверлив в шейме отверстие, вставляют в него маленькое латунное колечко.

Готовый якорь покрывают лаком. Следует иметь в виду, что якоря всех типов всегда изготовляли из железа и красили в черный цвет. Для малых моделей якорь целиком делают из одного куска латуни, включая веретено, рога и лапы.

Цепи с контрфорсами изготовляют из латунной цепочки. Легкими ударами молотка звеньям придают овальную форму, затем припаивают к ним контрфорсы из латунной проволочки. Чтобы удобнее было паять, цепочку нужно предварительно растянуть на деревянной доске при помощи маленьких шпилек.

МЕХАНИЗМЫ И ОБОРУДОВАНИЕ ЛЛЯ РАБОТЫ С ЯКОРЯМИ

Кроме якорей и якорных цепей в якорное устройство судна входят шпили, брашпили, якорные клюзы, цепные стопора, кнехты и приспособления для крепления якорной цепи.

Поднять якорь с грунта или, как говорят, выбрать якорь, можно либо вручную (так поступали, например, на малых судах в доисторическую эпоху), либо с помощью шпилей (на римских судах из озера Неми уже был найден прототип шпиля, который состоял из платформы, вращавшейся на шарах).

Шпиль — один из важнейших механизмов, служащий не только для подъема якоря (в этом случае его называют якорным шпилем), но и для подъема реев, спуска и подъема шлюпок и т. д. На старинных судах обычно применяли два шпиля: большой и малый.

Шпиль состоял из шпилевой колонны или столба, верхняя часть которого имела восьмигранное поперечное сечение и называлась шпинделем или веретеном. На боковых гранях веретена устанавливали несколько ребер — вельпсов. Над ними находилась голова шпиля — дромгед, по окружности которого были распределены квадратные отверстия — шпиль-гаты — для установки вымбовокрычагов. С помощью последних на шпиль передавали вращающие усилия. Среднюю часть шпиля, вокруг которой обма-

¹ В СССР стандартная длина смычки 23 м.

тывали якорный канат, называли барабаном, или баллером. Чтобы воспрепятствовать вращению шпиля в противоположную сторону, в основании барабана — палгеде — делали квадратные отверстия, в которые входили палы — деревянные штыри, установленные на палубе вокруг шпиля.

Большие шпили имели по два барабана, один из которых находился на первой (нижней) палубе, а другой — на второй. Их

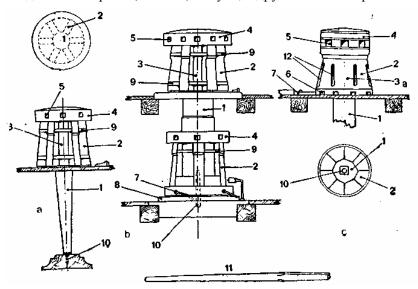


Рис. 461. Старинные шпили: а — малый английский; b — большой английский; с — небольшой средневековый.

1 — шпилевая колонна или столб; 2 — вельпсы; 3 — шпиндель или веретено; 3а — баллер или барабан; 4 — дромгед; 5 — шпиль-гаты; 6 — квадратные гнезда в палгеде для застопоривания шпиля палами: 7 — палы; 8 — палгун; 9 — вельпсовые перемычки; 10 — цапфа; 11 — вымбовка; 12 — выемки между вельпсами для увеличения трения

применяли главным образом для подъема якорей, при этом одновременно работали люди, находившиеся на двух палубах. Колонну малого шпиля устанавливали на второй или третьей палубе, а его барабан выводили на бак (рис. 461, с).

Шпили современных парусных судов не имеют существенных отличий от шпилей старинных судов. Они состоят из оси — шпинделя, на который надет барабан. На поверхности барабана находится несколько изогнутых деревянных или металлических ребер—вельпсов, обеспечивающих более плотное прилегание троса к барабану при его вращении.

После введения цепей палгед шпиля изменили. В основание баллера поставили цепной барабан—звездочку, позволявшую удерживать цепь. В этой звездочке (называется по фамилии изо-

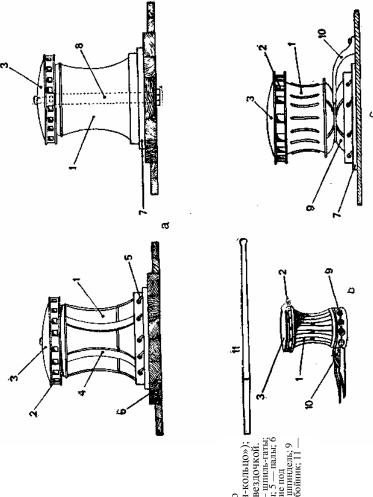


Рис. 462. Шпили: а — обыкновенный; b — со звездочкой («барботин-кольц с — с обыкновенной звездочкой / — баллер или баван: 2 — шпиль.

бретателя «барботин-кольцо») вначале делали гнезда, имевшие форму звеньев якорь-цепи, а позднее — крестообразные выемки. Чтобы было легче снимать якорную цепь со звездочки, на фундаменте шпиля устанавливают цепеотбойник (рис. 462). На современных судах шпили приводятся во вращение паровым или электрическими приводами (рис. 463).

Брашпили появились в XVII в. на торговых судах. Это горизонтальные шпили, состоящие из двух барабанов, ось которых — веретено — поддерживалась двумя боковыми битенгами. Веретено выходило через битенги наружу, на его поверхности имелся

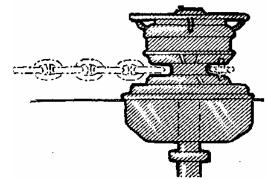


Рис. 463. Современный электрический шпиль.

ряд квадратных отверстий — шпиль-гатов — для установки вымбовок. Посредине брашпиля находилась колонка, на которой стояли палы,

скользившие по зубчатым колесам веретена (рис. 464).

Более поздние брашпили приводились во вращение балансиром — коромыслом, подымавшим и опускавшим тяги. Последние, в свою очередь, поднимали и опускали обоймы, обхватывавшие веретено брашпиля. В результате этого палы обойм — собачки—действовали на зубчатые колеса, которые вращались вместе с барабаном. С боков брашпиль имел два дополнительных барабана — турачки, которые применялись при швартовных операциях (рис. 465).

В 1896 г. англичане изготовили железный брашпиль, по устройству аналогичный деревянному, который работал тоже при помощи балансира.

Паровые брашпили (появились на паровых судах) приводились в движение двумя паровыми цилиндрами, шатуны которых вращали центральные зубчатые колеса. В случае необходимости работу брашпиля можно было обеспечить балансиром, приводимым в движение вручную (рис. 466).

На современных парусных судах брашпиль работает от электромотора (рис. 467). Правда, на малых судах и сейчас используют брашпили с ручным приводом и редуктором (рис. 468).

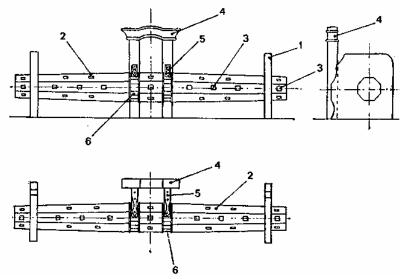


Рис. 464. Брашпиль XVII—XVIII вв.

1 — битенги; 2 — барабан; 3 — шпиль-гаты; 4 — траверза; 5 — палы; 6 — зубчатые колеса.

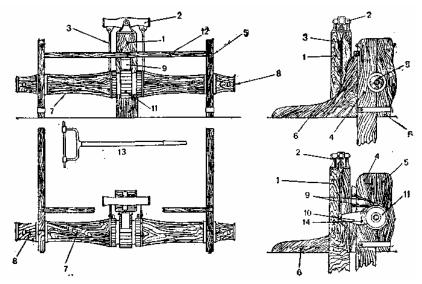


Рис. 465. Брашпиль XIX в.

1— колонка; 2 — коромысло; 3 — тяги; 4 — битенги; 5 — «подушки»; 6 — кница; 7 — барабаны; 8 — турачкн; 9 — пал; 10 — обойма; 11 - зубчатое колесо; 12 — траверза; 13 — рукоятка коромысла; 14 - собачки.

Заметим, что якоря на парусных и торговых судах выбирают и отдают в наши дни с помощью брашпилей, на военных — с помощью шпилей.

Якорные клюзы — это цилиндрические отверстия в носовой части судна, через которые проходят якорные канаты или цепи. Раструбы клюзов на старинных судах были свинцовыми, а на современных они железные; клюзы выполняют роль прокладки между якорем и бортом (рис. 469). Для герметичного закрытия

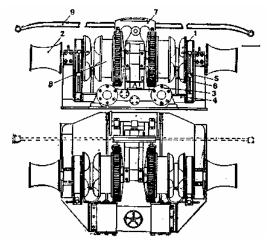


Рис. 466. Паровой брашпиль со вспомогательным ручным приволом

1 — звездочки; 2 — турачки; 3 — паровой цилиндр; 4 — палубные клюзы; 5 — стопор; 6 — цепеотбойник; 7 — коромысло; 8 — муфты; 9 — рукоятки коромысла.

клюзов сверху во время плавания применяли деревянные пробки, называвшиеся клюз-саками, или парусиновые мешки, набитые ворсом.

Стопор якорь-цепи — это устройство, находящееся на палубе между якорным клюзом и битенгом и служащее для снятия усилий со шпиля или брашпиля при выбранном якоре (рис. 470).

Битенги устанавливали между стопором цепи и якорным шпилем; их назначение — удерживать цепь, когда якорь лежит на грунте. На старинных судах тоже имелись битенги, на которые крепили якорный канат; сам канат хранили в специально отведенном месте или канатном ящике (см. рис. 141). В качестве дополнительных стопоров применяли короткие отрезки цепи или троса — цепные или тросовые стопоры, коренные концы которых крепили на обухах, вбитых в палубу.

Зажимной подпалубный стопор (палубная машинка). Цепь проходила через шпиль или брашпиль и палубный клюз в цепной

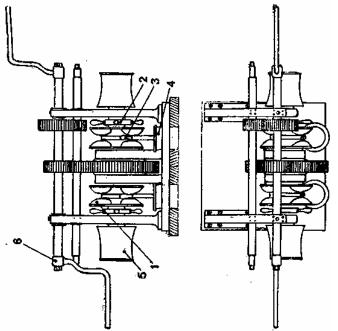


Рис. 468. Брашпиль с ручным приводом. 1— звездочки; 2— муфты; 3— цепеотбойник; 3— палубные клюзы; 5 турачки; 6— рукоятки ручного привода.

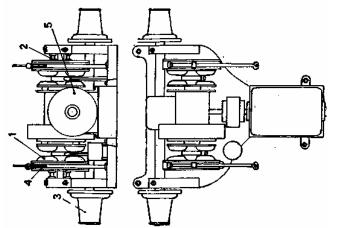


Рис. 467. Брашпиль с электромотором. 1 — звездочки; 2 — муфты; 3 — гурачки; 4 — ленточный тормоз; 5 — электромотор.

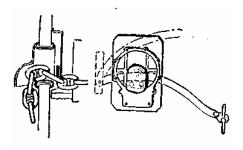


Рис. 471. Зажимной подпалубный стопор (палубная машинка).

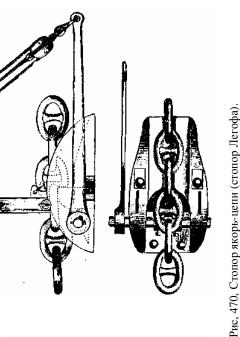


Рис. 469. Якорный клюз современного судна.

ящик. На современных судах предусмотрено предохранительное устройство, находящееся подле палубного клюза и представляющее еще одно зажимное приспособление для якорь-цепи. Его назначение — предотвратить самопроизвольную отдачу цепи (рис. 471).

КРЕПЛЕНИЕ ЯКОРЯ НА БОРТУ СТАРИННЫХ СУДОВ

Для установки якоря на борту судна служили специальные устройства и дельные вещи, а именно: крамболы и фиш-балки с талями, подъемное устройство для запасного якоря, различные тросы—пертулини, рустовы и найтовы, а также якорные машинки, шкуны и пр.

Крамболы представляют собой балки, выступающие за борт судна, жестко соединенные с баком. В обращение они вошли

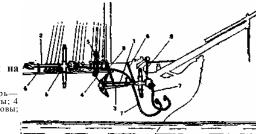


Рис. 472. Крепление якорей на судне XVIII в.

1 — правый становой якорь— плехт; 2 — бухт; 3 — фиш-штерты; 4 — буйреп; 5 — томбуй; 6 — рустовы; 7 — якорный канат; 8 — каттали.

в XVII в. Ha

выступавшем конце крамбола находились шкив-гаты со шкивами, через которые проходил талреп кат-талей или ката. Крамболы служили для «взятия якоря на кат», т. е. для подтягивания гаком кат-талей рыма якоря под балку (рис. 472—475). После этого в рым якоря заводили толстый конец или цепь — пертулинь, который крепили на кнехтах бака. На некоторых современных парусных судах вместо крамбол применяют поворотные кат-балки или ставят маленькие железные краны.

Пентер- или фиш-балки. Уже упоминалось, что старинные якоря снабжали фиш-штертами, позволявшими закладывать в них гак соответствующих талей, для того чтобы поставить якорь в горизонтальное положение. (Эти тали называли фиш-талями, их гак — пентер-гаком, балки, расположенные в корму от крамболы, к которой подвешивали фиш-тали, — фиш-балкой, а саму операцию — «взять якорь на фиш»). Во второй половине XIX в. сначала на больших парусных судах для этих целей стали применять краны. На малых судах фиш-тали крепили непосредственно к драйрепу, укрепленному на краспице фок-мачты.

Рустовы — это крепкие растительные тросы, которые служили для крепления якоря у борта судна после взятия его на фиш. Ко-

ренной конец русленя крепили на стойке фальшборта, а ходовой дважды или трижды обматывали вокруг рогов якоря и укладывали на битенг.

На современных парусных судах вместо растительного рустова применяют две тонкие цепи, коренные концы которых крепят на фальшборте или соответствующем битенге. Такие рустовы обхватывают веретено якоря и крепятся на якорной машинке (см. рис. 472—475).

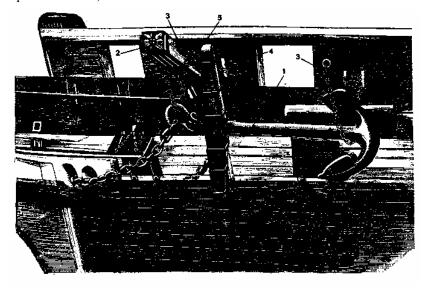


Рис. 473. Крепление якоря на судне XIX в.

1 — левый становой якорь — дагликс; 2 — крамбол; 3 — пертулинь и рустов; 4 — битенг для пертулиня; 5 — простая якорная машинка.

Якорные найтовы — это небольшие цепи или растительные концы, которые во время плавания дополнительно накладывают на якорь, в помощь рустовам.

Якорная машинка — это устройство, предназначенное для мгновенной отдачи рустовов. В зависимости от исполнения различают простые или двойные якорные машинки (см. рис. 473—475).

Шкун, или якорная подушка, — это металлический лист на борту, в который упираются рога якоря, когда он закреплен у борта (см. рис. 475).

Кран для запасного якоря. На некоторых парусных и современных судах в носовой части устанавливают небольшой кран, позволяющий взять якорь на носовую палубу или ввести в действие запасной якорь (рис. 476).

Гис. 474. Бухт судна АТА В. 1 — якорь; 2 — рустовы; 3 — стойки для якоря; 4 - двойная якорная машинка; 5 - найтов якоря.

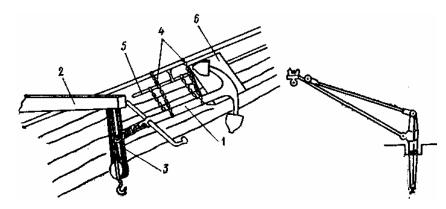


Рис. 475. Крепление якоря на позднейших парусных судах.

1 — якорь; 2 — крамбол или кат-балка; 3 — кат-тали; 4 — рустовы; 5 - якорная машинка; 6 — шкун.

Рис. 476. Кран для запасного якоря.

МЕЛКИЕ СУДА

Малые плавсредства могут приводиться в движение веслами, парусами или мотором и предназначены для перевозки людей и небольших грузов в гаванях. К ним относят лодки (шлюпки), в том числе и прогулочные, малые парусные суда и моторные катера. Гребные лодки (шлюпки). Лодки уже в конце доисторического периода служили для перевозки людей и грузов. Первая такая лодка — пирога или однодревка — была выдолблена из ствола дерева и двигалась при помощи коротких весел — гребков. Значительно позднее весла были установлены на бортах и сделаны поворотными. С этого времени история лодок неразрывно связана с историей судов. В настоящее время различные конструкции лодок в зависимости от назначения и места постройки могут иметь различные наименования.

Барказами называют большие и крепкие шлюпки в торговом и военном флоте (рис. 477, a, b). Их используют для различных работ в море, например для завозки якорей и т. д. (рис. 478).

Полубарказы (гребные катера) применяют для тех же целей, что и барказы (рис. 477, с—f).

Ялы по своим размерам меньше, чем полубарказы, имеют более острые обводы, применяются для различных целей, в основном при швартовках. Раньше их использовали для связи между судами и берегом (рис. 477, d). Существуют более изящные прогулочные ялы (рис. 480, c), а также спасательные. На последних имеются воздушные ящики. Ялами вооружают как военные, так и торговые суда (рис. 479, b и 480, a).

Вельботы находятся в персональном пользовании адмиралов и командиров кораблей. В итальянском военно-морском флоте под вельботом (baleniera) понимают длинную острую шлюпку, нос и корма которой имеют одинаковые обводы (рис. 480, b). Раньше вельботом (по-англ. Whaleboot: Whale — кит, boot — шлюпка) называли шлюпку, предназначенную для китобойного промысла (рис. 479, c).

Гичка — это легкая и узкая шлюпка, предназначенная для разъездов капитана и офицеров торговых судов (рис. 479, d). Гичками называют и элегантные длинные и узкие прогулочные шлюпки, а также классическую гоночную; последняя имеет особые сиденья — слайды, передвигающиеся на роликах.

Академические лодки легкие с уключинами, вынесенными на специальных кронштейнах за борт так, чтобы был больший рычаг. Академические лодки только с одним гребцом называют скифами. Канот (?) (итал. canotto) — это наименьшая из прогулочных шлюпок, применяющихся на торговых судах. Она имеет очень острый корпус и приводится в движение шестью-восьмью гребцами. В старину так называли шлюпки, находившиеся на вооружении торговых и военных судов и предназначавшиеся для разъездов в портах. Они имели в длину от 16 до 36 футов (4,88—10,98 м).

Во время плавания их устанавливали между фок- и грот-мачтами или на шкафуте, одну в другую.

Каики, скифы и фелюки — это небольшие шлюпки, находившиеся на галерах. Скифами называли и шлюпки судов XIV в.

Спасательные шлюпки с воздушными ящиками бывают либо гребными, либо моторными. Используются береговыми спасательными станциями. На большие шлюпки часто ставят двигатель.

Габары (?) (итал. burchiello) — большие, тяжелые шлюпки для перевозки пассажиров и товаров по рекам или каналам.

Гондолы — знаменитые венецианские лодки с плоским днищем, асимметричным поперечным сечением и высоко поднятыми оконечностями, одна из которых украшена железной гребенкой. Управляет ею один гребец с помощью весла. Каюта гондолы обтянута материей.

В XIII в. гондолой называли судно длиной до 24 футов с 12 гребцами, которое принадлежало дожу (рис. 481).

Байдарка — маленькая лодка для одного человека, управляемая двухлопастным гребком. Имеет плоское днище и острые нос и корму.

Каноэ — легкая лодка для одного человека, происходящая от каяков эскимосов.

На некоторых шлюпках кроме весел применяют и паруса. Так, барказы, ялы и вельботы имеют косое или шпринтовое вооружение.

Малые парусные суда приводятся в движение в основном парусами. К этой категории относят суда водоизмещением до 100 т, а именно: нависелло, тартаны, трабакколо, рыболовные парусные суда, а также многочисленные типы парусных судов, обычно называемых яхтами. Последние разделяют на крейсерские (предназначены для длительных рейсов) и гоночные (обладают особыми качествами и строят по международным правилам) (рис. 482—483).

Яхты могут быть парусными, моторными, парусно-моторными или моторно-парусными.

Парусные яхты разделяют на классы в зависимости от водоизмещения, парусности и формы корпуса. Так, существуют яхты международных, национальных и свободных классов. В зависимости от примененного вооружения различают яхты с рейковыми или бермудскими парусами, с вооружением шхуны, тендера, иола или кеча, а в зависимости от корпуса — со сплошной или частичной палубами, с балластным килем или со швертом (швертботы), а также с плавниковым или бульбообразным килем.

Моторные катера. На моторных катерах в качестве двигателя применяют паровую машину или двигатель внутреннего сгорания (бензиновый мотор или дизель).

В зависимости от района установки мотора различают катера со стационарным и подвесным мотором. Моторные катер а тоже разделяют на прогулочные и гоночные.

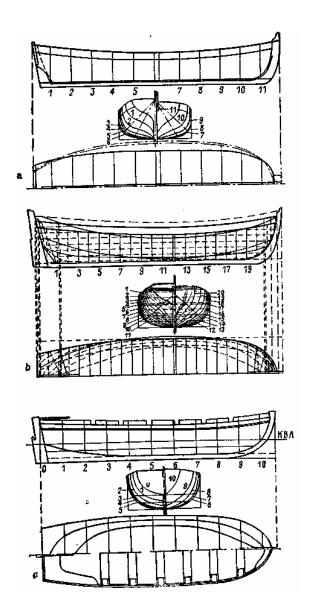
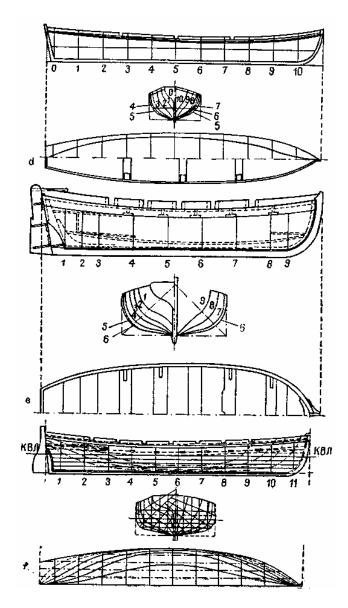



Рис. 477. Шлюпки старинных судов: а — барказ XVII—XVIII вв.; с — полубарказ парусного военного судна первого ранга 1750 г.;

b — барказ парусного военного судна третьего ранга, 1730 г.; d — ял парусного военного судна 1750 г.; e — полубарказ парусного военного судна 1805 г.; f - судна 1860—1870 гг.

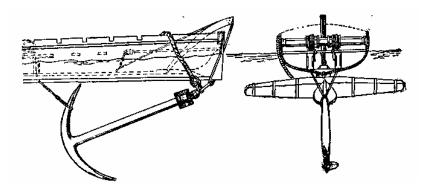


Рис. 478. Завозка якоря.

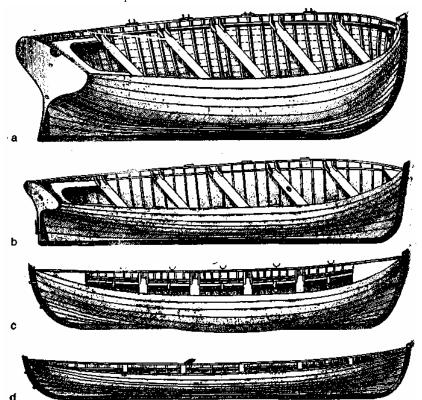


Рис. 479. Шлюпки: а — полубарказ или барказ; b — ял; с — вельбот; d — ялик или гичка,

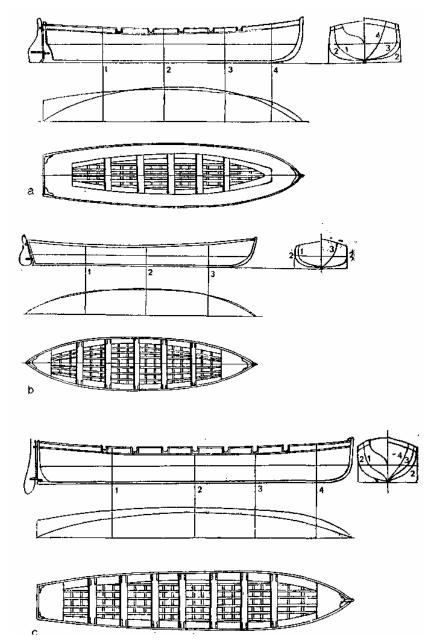


Рис. 480. Шлюпки итальянского военно-морского флота: а — непотопляемый ял длиной 8,60 м; b — вельбот; с — гоночный и прогулочный ял,

К моторным прогулочным катерам можно отнести крейсерские яхты, оборудованные стационарным мотором значительной мощности, имеющие обширную кабину и вспомогательное оборудование, предназначенное для долгого плавания.

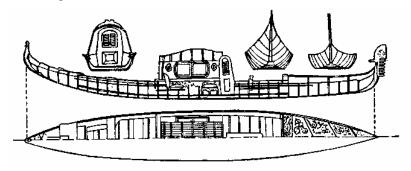


Рис. 481. Гондола.

Гоночные катера, или глиссеры, развивают большие скорости благодаря специальному стационарному или подвесному мотору большой мощности. Их конструкция, рабочий объем цилиндров мотора и вес корпуса регулируются международными правилами (рис. 484).

ДЕТАЛИ ШЛЮПОК И ИХ СНАБЖЕНИЕ

Корпус шлюпок, как и любого судна, имеет киль, шпангоуты, обшивку и т. д. На верхней кромке борта сделан планширь. Банки — поперечные доски — служат для сиденья гребцов, для пассажиров предназначены кормовые сиденья с заспинной доской. Между заспинной доской и последней кормовой банкой находится кормовое отделение и сиденье для рулевого. Съемные рыбины (внутренняя обшивка) покрывают днище шлюпки, в кормовой и носовой частях иногда устанавливают деревянные решетки. Водопротоки в средней части днища служат для сбора попавшей воды. Здесь же находится спускное отверстие, закрываемое пробкой (рис. 485).

Весла — длинные круглые шесты, изготовленные из деревянных брусков; один из их концов имеет форму лопасти. Весло состоит из трех частей: утолщенной цилиндрической или конической рукоятки, цилиндрического веретена в середине, опирающегося на планширь или уключину, и лопасти (на шлюпках она плоская, а на лодках изогнутая) (рис. 486).

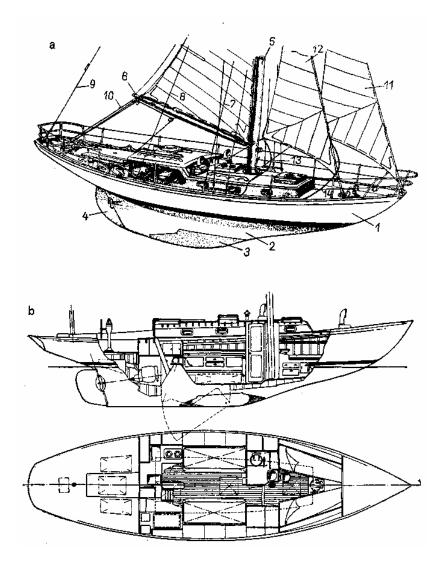


Рис. 482. Крейсерские яхты: а — со вспомогательными моторами. 1 — корпус; 2 — плавник; 3 — свинцовый киль; 4 — руль; 5 — мачта; 6 — гротагик; 7 — ванты; 8 — бакштаг; 9 — ахтерштаг; 10 - грота-шкот; 11 — кливер; 12 —стаксель; 13 — стаксель-шкот; 14 - кливер-шкот.

b — "Финистер".

¹ Под рукояткой у вальковых весел (см. второе весло на рис. 486, а) у нас понимают лишь сточенный конец весла ниже валька.

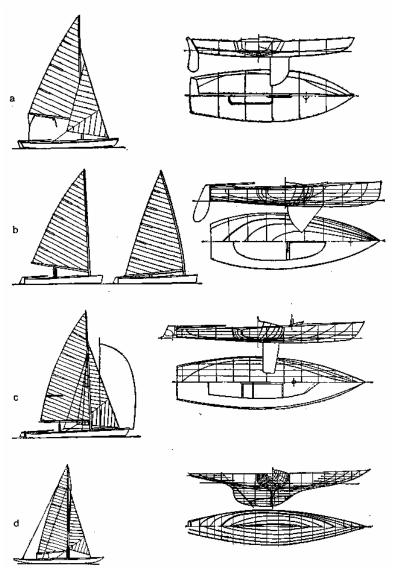
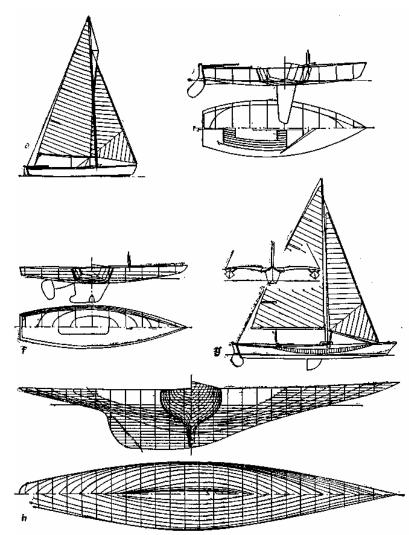



Рис. 483. Гоночные яхты: а — швертбот «Снайп»; b — швертбот «Финн»; е -швертбот «Лайтнинг»; f — килевая яхта класса «Звездный»;

с - швертбот «Летучий голландец»; d — килевая яхта класса R — 5,5 м; g — ран; h— теоретический чертеж килевой яхты «Эндевор» (для гонок на кубок Америки).

Различают: собственно весла, рукоятки которых имеют длину, равную ширине шлюпки. Рыбаки гребут ими стоя и повернувшись лицом к носу (рис. 486, е); весла с двумя лопастями—так называемые двусторонние гребки, они не имеют рукоятки и удерживаются гребцом за середину (рис. 486, d); парные весла, их короткие рукоятки позволяют гребцам, сидящим посредине банки, работать сразу двумя веслами (рис. 486, а—d); кормовое весло —

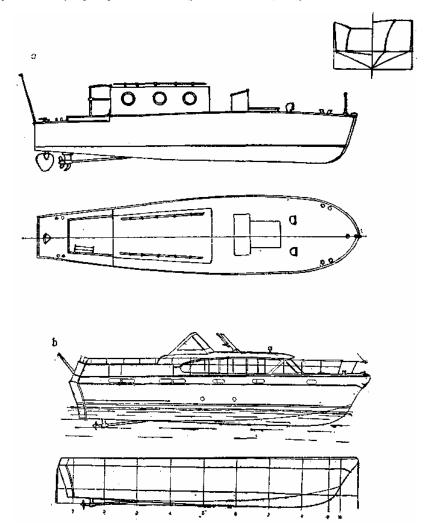
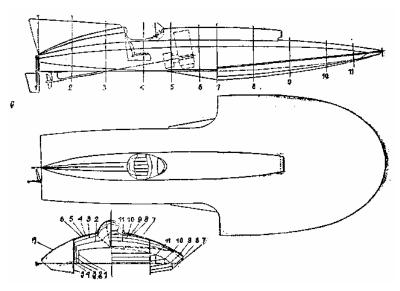
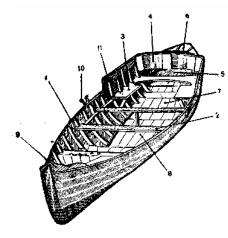


Рис. 484. Моторный катер итальянского военно-мор

его устанавливают на корме и гребут, покачивая с одной стороны на другую, т. е. галанят или юлят.


Из старинных весел упомянем односторонний гребок (рис. 486, h) и галерное весло, которым гребли от трех до шести человек (рис. 486, i).

Весла спортивных лодок не имеют особых рукояток.


Уключины — круглые или полукруглые отверстия, прорезанные в бортах (иногда их называют полупортиками для весел), или металлические вилки. На них опирается веретено весла (на гоночных лодках уключины вынесены за борт на специальные кронштейны).

В качестве уключин иногда применяют деревянные или металлические нагели, вбитые в планширь. Весла в них крепят при помощи стропок.

К снабжению шлюпок относятся: отпорный крюк (багор) — древко с металлическим наконечником и одним или двумя загнутыми рожками (ими подтягивают или отталкивают шлюпку или какой-нибудь предмет); фалини — тросы для крепления шлюпки у борта, ввязанные в носовой и кормовой рымы шлюпки; кранцы — своего рода подушки различной формы, вывешиваемые за борт шлюпки для предохранения ее от ударов; шлюпочная лейка — черпак с короткой ручкой для удаления поступившей воды; компас; ведра; анкерок для питьевой воды. Кроме того, на шлюпках должны быть запас продовольствия, комплект медикаментов и т. д. (рис. 487).

ского флота длиной 10 м (а), яхта (и) и глиссер (с).

Рис. 485. Детали гребной шлюпки.

1 — планширь; 2 — банки; 3 — боковые места; 4 — заспинная доска; 5 — кормовое отделение; 6 — сиденье для рулевого; 7 — внутренняя общивка днища шлюпки; 8 — рыбины; 9 — брештук; 10 — уключины; 11 - шпангоуты.

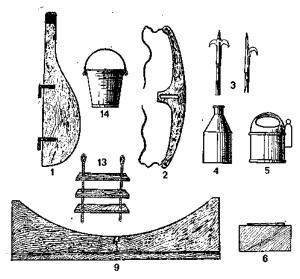
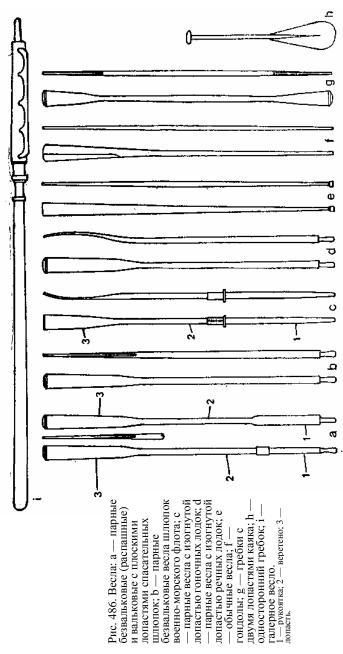



Рис. 487. Снабжение шлюпок.

1— руль; 2— двурогий румпель; 3— отпорный крюк; 4— бидон для масла; 5— шлюпочный компас с подсветкой; 6— аптечка в водонепроницаемом ящике; 7— неприкосновенный запас; 8— анкерок для питьевой воды; 9— кильблоки для установки шлюпки; 10- уключина; 11- нагели для весел; 12- лейка; 13- небольшой трап; 14- ведро.

